

globalspecialties.com

1-800-572-1028
22820 Savi Ranch Parkway Yorba Linda, CA 92887

©2012 Global Specialties

RP6 CONTROL M32
Expansion Module

RP6 CONTROL M32
Expansion Module

Manual

- English -

Version RP6-M32-EN-20130219

IMPORTANT INFORMATION!
Please read carefully!

Before you start operating this RP6 expansion module, you must read
this manual AND the RP6 ROBOT SYSTEM manual completely! The doc-
umentation contains information about how to operate the systems
properly and how to avoid dangerous situations! Furthermore, the
manuals provide important details, which may be unknown to average
users. The RP6 CONTROL M32 manual is only supplementary docu-
mentation!

Paying no attention to this manual will cause a loss of warranty! Addi-
tionally, Global Specialties cannot be made responsible for any dam-
ages caused by neglecting the manual's instructions!

Please pay special attention to the chapter “Safety instructions” in the
RP6 ROBOT SYSTEM manual!

Legal Notice

©2013 Global Specialties

22820 Savi Ranch Parkway
Yorba Linda, CA 92887 USA

Tel No: (800) 572-1028
Fax No: (215) 830-7370

E-Mail: info@globalspecialties.com

This manual is protected by copyright. No part
of it may be copied, reproduced or distributed
without the prior written permission of the edit-
or!

Changes in product specifications and scope of
delivery are reserved. The contents of this manu-
al may change at any time without prior notice.
New versions of this manual will be published on
our website:

www.globalspecialties.com

Although we carefully control contents, we do not assume any liability for the contents of extern-
al websites referred to in this manual. Solely the operators of these pages bear responsibility for
the contents.

Limited One-Year Warranty

Global Specialties warrants to the original purchaser that its products and the component parts
thereof, will be free from defects in workmanship and materials for a period of one year from
date of purchase.

Global Specialties will, without charge, repair or replace, at its option, defective product or com-
ponent parts. Returned products must be accompanied by proof of the purchase date in the form
of a sales receipt.

Exclusions: This warranty does not apply in the event of misuse or abuse of the product or as a
result of unauthorized alterations or repairs.
Global Specialties shall not be liable for any consequential damages, including without limitation,
damages resulting from loss of use. Some states do not allow limitations of incidental or con-
sequential damages. So the above limitations or exclusions may not apply to you.

This warranty gives you specific rights and you may have other rights, which vary from state-to-
state.

Symbols

The following Symbols are used in this manual:

The “Attention!” Symbol is used to mark important details. Neg-
lecting these instructions may damage or destroy the robot
and/or additional components and you may risk your own or oth-
ers health!

The "Information" Symbol is used to mark useful tips and tricks
or background information. In this case the information is to be
considered as “useful, but not necessary”.

mailto:info@globalspecialties.com
http://www.globalspecialties.com/

Contents
1. The RP6 CONTROL M32 Expansion Module .. 5

1.1. Technical Support .. 6
1.2. Scope of Delivery .. 6
1.3. Features and Technical Data ... 7

2. Installing the Expansion Module ... 9
3. RP6 CONTROL Library ... 11

3.1.1. Initializing the Microcontroller...12
3.1.2. Status LEDs..12
3.1.3. Keys..13
3.1.4. Beeper...13
3.1.5. Microphone sensor..14
3.1.6. LC-Display...14
3.1.7. SPI Bus and SPI EEPROM...16
3.1.8. ADCs...18
3.1.9. I/O Ports..18

4. Example Programs ... 20
 APPENDIX ... 26

A – Connector Pinouts..26

RP6 ROBOT SYSTEM - 1. The RP6 CONTROL M32 Expansion Module

1. The RP6 CONTROL M32 Expansion Module
The RP6 CONTROL M32 (or shortly “RP6-M32”) expansion module enables you to up-
grade your robot with an additional Atmel ATMEGA32 microcontroller. Compared to
the controller on the mainboard, this one features twice as high clock frequency. And
as a bonus, on the RP6-M32 you have a lot more free processing time, because the
Motor Control, ACS, IRCOMM, etc. can be handled by the controller on the mainboard.

The external 32KB SPI EEPROM provides the module with a reliable (1 million cycles)
read- and writeable memory, which may be used for data-logging or as program stor-
age for Bytecode Interpreters like the NanoVM for Java. Optionally the board allows
you to solder an extra DIP 8 socket to the PCB for a second EEPROM.

The buttons, LEDs, piezoelectric beeper and the optionally available LC-Display give
you lots of additional possibilities. They enable you to control the robot, e.g. by pro-
gramming a small command menu with a few push buttons for selecting special func-
tions – and of course it can be used as a display for measurement values and status
messages. The beeper may generate a range of sounds and for instance play a greet-
ing melody at program's start or an alarm sound at low battery level.

For controlling your own circuits on the experiment modules, the 14 free I/O-ports are
available on two standard 10 pin connectors. Six out of these 14 I/O-lines may be
used as Analog/Digital Converter channels.

Last but not least, the module has a microphone sensor, which was available on the
predecessor CCRP5 as well. The microphone will allow you to start the RP6 by clap-
ping your hands or similar things. We designed the control circuit as a “Peak Detector”
for responding to maximum acoustic levels in the robot's environment. Of course, the
detector will only perform well if the motors are stopped or run at slow speeds only,
because the microphone is much more sensitive to the noise generated by the robot.

Before starting any operations with the RP6-M32 you should make yourself fa-
miliar with the RP6 Robot itself by testing all example programs WITHOUT the RP6-
M32 expansion module mounted on the robot!

This manual has to be considered as a supplementary manual only. Please read the
complete RP6 manual before starting with the RP6-M32!

Important note for beginners: Programs written for the RP6-M32 clearly CAN NOT
be run on the Robot base unit and vice versa, as both systems have different pin as-
signments and clock frequencies!

ATTENTION: Loading a program to an inappropriate controller
may probably damage the controller or interface devices! If
an I/O-pin is usually connected to a circuit in input mode and
the wrong program sets this pin to output mode, the I/O-pin
may get overloaded and/or cause damage to the circuit!

Usually nothing terrible will happen if you make this mistake, but we can not guaran-
tee this! The RobotLoader is unable to discern between hexfiles for different control-
lers, as these files all look the same. To avoid mistakes, you may use the Robot-
Loader's functionality to create several categories and define dedicated categories for
every expansion module...

- 5 -

RP6 ROBOT SYSTEM - 1. The RP6 CONTROL M32 Expansion Module

1.1. Technical Support
You may contact our support team as follows (please read this
manual completely before contacting the support! Reading the
manual carefully will answer most of your possible questions already!
Please also read appendix A – Troubleshooting):

Global Specialties
22820 Savi Ranch Parkway
Yorba Linda, CA 92887 USA

Tel No: (800) 572-1028
Fax No: (215) 830-7370

E-Mail: info@globalspecialties.com

www.globalspecialties.com

All software updates, new versions of this manual
and further informations will be published on our web-
site.

1.2. Scope of Delivery
You should find the following items in your RP6 CONTROL M32 box:

● RP6 CONTROL M32 module
● 4 pcs 25mm M3 distance bolts
● 4 pcs M3 screws
● 4 pcs M3 nuts
● 4 pcs 14pin connectors
● 2 pcs 14pin flat cable

Please find the software and the PDF manual on the main RP6 CD-ROM. Updated ver-
sions of the the software and this manual will be published on our website!

- 6 -

http://www.globalspecialties.com/
mailto:info@globalspecialties.com

RP6 ROBOT SYSTEM - 1. The RP6 CONTROL M32 Expansion Module

1.3. Features and Technical Data
This section provides an overview of the RP6-M32's features and an introduction of
some basic keywords, to make you familiar with the terminology used in this manual.
Most of these keywords will be explained in later chapters.

Features, Components and Technical Data of the RP6 CONTROL M32:

● Powerful Atmel ATMEGA32 8-Bit Microcontroller

◊ Speed 16 MIPS (=16 Million Instructions per Second) at 16MHz clock, which is
twice as fast compared to the controller on the RP6 mainboard!

◊ Memory: 32KB Flash ROM, 2KB SRAM, 1KB EEPROM

◊ freely programmable in C (by using WinAVR / avr-gcc)!

◊ ... and many more features (please have a look at the datasheet)!

● External 32KB SPI EEPROM for non-volatile data storage

◊ Very fast SPI Interface (8MHz clock frequency)

◊ Each memory cell is specified for at least 1.000.000 write/erase cycles.

◊ ... see datasheet on the CD-ROM (AT25256A) for additional information.

◊ Well suited for data-logging or program storage for Bytecode Interpreters (for in-
stance a Java VM like the small NanoVM: http://www.harbaum.org/till/nanovm/ .
This VM however will have to be adapted for using an external EEPROM ...)

● I²C-Bus Expansion connectors

◊ can control any I²C Bus slaves

◊ The module's MEGA32 may be used as master or slave device. Usually we suggest
to use the expansion board controller as master for complete control of the Robot
and to use the mainboard's controller as slave for motor speed control, ACS, IR-
COMM, battery monitoring, etc. in order to disburden the expansion board control-
ler.

● Microphone sensor

◊ to detect noise, e.g. clapping hands, etc.

● Piezo beeper

◊ useful for generating simple melodies

◊ Signal generator, e.g. to indicate errors or state changes

● 4 Status LEDs

● 5 Buttons

● LC-Display Port

◊ suitable for connecting a 16x2 character LC-Display, but you may use other LC-
Display formats as well. However, these will have to be attached by two spacer
bolts and may not fit on one side ... Please check dimensions before you order a
display and additionally obtain suitable installation material! In order to use
formats differing from 16x2 you will also have to do some small changes in the

- 7 -

http://www.harbaum.org/till/nanovm/

RP6 ROBOT SYSTEM - 1. The RP6 CONTROL M32 Expansion Module

library functions (mainly for display initialisation and maybe for cursor
positioning). The settings in all example programs match 16x2 character displays
only, but it is easy to modify these settings for other displays!

◊ The display may be used to show text messages, menus, program status mes-
sages or sensor values.

● 14 freely available I/O Ports for controlling your own circuits and sensors.

◊ 6 of them may be used for ADC-channels (Analog/Digital Converter)

● Up to 3 external interrupts are available on the XBUS-connector.

● USB PC Interface connector available for program upload.

◊ Program upload works just as quick and easy as with the robot base unit through
the USB Interface and the comfortable RobotLoader program.

We provide some C example programs and an extensive function library, which will
definitely be a great help for beginners.

We are planning to publish more programs and updates for the RP6 and its expansion
module on the robot's website. Of course, we also encourage you to exchange pro-
grams with other RP6 users! The RP6ControlLibrary and all sample programs are pub-
lished under the Open Source Licence GPL.

- 8 -

RP6 ROBOT SYSTEM - 2. Installing the Expansion Module

2. Installing the Expansion Module
The specific way you can mount the module on the robot depends on other extension
modules, which you already may have installed on the robot.

In order to attach the module to the ro-
bot you will first have to loosen the four
screws of the mainboard just like you
did when inserting the batteries. You
may also carefully detach the bumper
PCB's tiny plug from the Sensor PCB to
lift the main board completely. How-
ever, a complete lift of the mainboard
is not necessary as long as you can use
your fingers for fixing the distance bolts
with the M3 nuts under the main board
area.

Attention: To prevent mechanical
damage to the Sensor PCB, support it
by pressing a finger against the sensor
PCB's backside during re-connection of the cable! Alternatively, you may also remove
both screws of the bumper's PCB and leave the cable connected to the system...

Subsequently you have to attach four 25mm M3 distance bolts
with M3 nuts to the main board's mounting holes as shown in
the photographs.

The upper photograph shows how all 8 distance bolts have
been mounted, including the bolts for the breadboard expan-
sion module!

Having completed these preparations, you can insert the expansion module on top of
the distance bolts and fix it with four M3 screws.

Finally connect both flat cables – that's it.

We recommend to install the RP6 CON-
TROL M32 at the rear robot's expan-
sion-stack – as the top module. This loca-
tion enables you operating the keys and
easily reading the display. Additionally
both USB Interface connectors are acces-
ible on the same side now. The experi-
ment module may now be installed at the
robot's front stack (see an example con-
figurationin the photograph on the next
page).

Users who purchased a 16x2 character
LC-Display must connect and install the
display on the expansion module BEFORE
installing the module on the robot.

- 9 -

RP6 ROBOT SYSTEM - 2. Installing the Expansion Module

The display's 14 pin flat-cable is very flex-
ible and may easily be folded. In order to
hide the cable underneath the display
module, please fold the cable for the
RP6-M32 expansion module as shown on
the photo.

Then attach the display to the expansion
module with e.g. 20mm or 25mm dis-
tance bolts and suitable nuts.

You may use any other Text LC-Display
with a HD44780 compatible controller. Of
course, you will have to connect your own cable to the display unit (by soldering). At-
tention must be paid to the correct pin assignment!

You do not necessairly need to fix the Display with 4 distance bolts as shown in the
photograph! Two bolts (either both at the front side or alternatively at the rear side)
will provide sufficient fixation of the module.

Tip: the RP6-M32 module does not contain additional distance bolts for
the display, but each expansion module kit includes four distance bolts,
including the nuts and screws. Of course these four parts are used for
mounting the expansion module as shown in the photographs, but al-
ternatively three bolts would be adequate as well – two at the front
side and one at the rear side in the middle!

By fixing the experiment module and the RP6-M32 like this, you would
get two unused spare distance bolts, nuts and screws for the display...

Completely assembled, the robot with display may look like this:

You may now easily connect both 10 pin connectors of the RP6-M32 module with the
experiment expansion module by using tiny 10pin flat-cables. On these connectors,
you have 14 free I/Os and 6 ADCs for sensor signal evaluation and measurements.

These flat cables can even be used for modules on different stack levels – the flat-
cables easily fit in the gap between two stacked modules.

- 10 -

RP6 ROBOT SYSTEM - 2. Installing the Expansion Module

At this stage you will be able to start a simple function check:

Connect the USB Interface to the PROG/UART connector on the RP6-M32 with the flat-
cable and start the RobotLoader. Now turn on the robot – a text message on the LC-
Display should appear and one of the LEDs should start blinking. After a successful
startup, please click on “Connect” in the RobotLoader – which should be confirmed by
a text message “Connected to RP6 Control” in the status box. If this worked, finish
reading this manual and go ahead with the example programs!

If the LC-display does not show any text (or only
two rows of dark boxes) while the LEDs are blink-
ing and the RobotLoader connection is initiated
successfully you will have to adjust the contrast of
the display (alternatively you may have used an-
other display type – but connected using a wrong
pin assignment...). Adjust the contrast with the
trimmer potentiometer R16 on the PCB with a
small flat-bladed screwdriver. A small screwdriver
(for cross slots) is applicable as well, but these
screwdrivers may often fail to match to the poten-
tiometer...

In order to easily adjust the potentiometer you may choose to unscrew the display (or
complete display adjustment before fixing it with the bolts). Please do not disconnect
the display! This allows you to adjust the contrast while it's on.

Alternatively you might adjust the tightened display with a very small screwdriver as
shown in the photograph. Please avoid touching any components or PCB-areas
with your screwdriver! We suggest to turn off the robot, insert the screwdriver in
the correct position, switch on the robot and adjust the contrast...

3. RP6 CONTROL Library
In analogy to the robot base unit we provided the RP6 CONTROL M32 with a extensive
function library including a great number of helpful functions for beginners. We named
the library RP6ControlLibrary or in short RP6ControlLib. A number of functions (stop-
watch, delay, UART and I²C-Bus) is identical to the RP6Library. The UART- and I²C-
Bus-functions even share identical files, which are located in subdirectory RP6common
in the RP6Library. We will not describe these identical functions again – please lookup
the corresponding chapter in the RP6 manual and it's example programs! This manual
will concentrate on functions especially dedicated to the RP6Control or slightly deviat-
ing from the RP6Lib-equivalents.

In spite of a the great number of already available functions, the RP6ControlLib must
be considered as a starting point only! A lot of functions may be added or improved.
Here your own programming capabilities are demanded!

- 11 -

RP6 ROBOT SYSTEM - 3. RP6 CONTROL Library

3.1.1. Initializing the Microcontroller

void initRP6Control(void)

As already stated in the RP6Lib, your programs must ALWAYS start by calling this
function! For RP6ControlLib only the name changed...

The initRP6Control-function initializes the hardware modules of the RP6-M32's Micro-
controller. The Microcontroller will only perform correctly if you start the program by
calling this function! The bootloader may be able to initialise some, but not all com-
ponents at startup.

Example:

1
2
3
4
5
6
7
8
9
10
11

#include "RP6ControlLib.h"

int main(void)
{
 initRP6Control(); // Initialization – ALWAYS call this function FIRST!

// [...] Program code...

while(true); // Infinite loop
return 0;

}

Each and every RP6 CONTROL M32 program will at least have to look like
this! The endless loop in line 9 is required to guarantee a defined end of the
program! In analogy to the mainboard's controller a program without this infinite
loop may not perform as expected!

3.1.2. Status LEDs

LED control works similar to the robot mainboard's. However the number of LEDs is
restricted to four and we will have to use different names as these LEDs are controlled
by an external shift register, which is also used for the LC-Display. The 8-Bit shift re-
gister is called “External Port”.

The RP6-M32 also uses a function “setLEDs”:

void setLEDs(uint8_t leds)

Example:

setLEDs(0b0000); // This command will turn off all LEDs.
setLEDs(0b0001); // turn on LED1 only
setLEDs(0b0010); // LED2
setLEDs(0b0100); // LED3
setLEDs(0b1010); // both LED4 and LED2

We also provided the alternative control method:

externalPort.LED1 = true; // activate LED1 in “External Port” Register
externalPort.LED2 = false; // deactivate LED2 in “External Port” Register
outputExt(); // Commit the settings!

// outputExt() will send the contents of the externalPort variable
// to the shift register – in analogy to updateLEDs() in the RP6Lib.
// However this function will also update the LCD data lines.

- 12 -

RP6 ROBOT SYSTEM - 3. RP6 CONTROL Library

3.1.3. Keys

In contrast to the RP6 we connected the 5 keys for the RP6-M32 to an ADC-channel,
which enables us to use a single pin for all keys. On the other hand the simplified cir -
cuit using 5 identical resistors (see circuit diagram on the RP6-CD) does not allow you
to simultaneously press more than one key. But usually this will be satisfactory for
typical user inputs!

uint8_t getPressedKeyNumber(void)

This function returns which key is pressed down by evaluating the ADC and comparing
the value with some predefined threshold values. Measurement values however may
vary with the resistor's manufacturing tolerances and in order to make your own RP6-
M32 work properly you may have adjust these thresholds in the library file! You will
find the predefined threshold values in the function getPressedKeyNumber.

uint8_t checkPressedKeyEvent(void)

This function checks whether a key has been pressed and returns the key's code num-
ber only once – in contrast to function getPressedKeyNumber, which constantly re-
turns the key code number as long as the key is pressed down. The function check-
PressedKeyEvent is quite useful for evaluating a key's value in the main loop without
interrupting the program flow.

A similar method is used in the function:

uint8_t checkReleasedKeyEvent(void)

In this case the key's value will be returned only once as soon as a key has been
pressed and then released. Function checkReleasedKeyEvent does not block the normal
program flow as well – you will not have to wait in a loop for the key release event.

3.1.4. Beeper

The RP6-M32's beeper may be controlled with the function:

void beep(uint8_t pitch, uint16_t time)

This is a non-blocking function – the function sets the pitch and the time period for
the generated sound and then returns directly. After the predefined period of time the
beeper will be deactivated automatically. However you must take into account the fol-
lowing side effect: each following call of this function will overwrite the previous set-
tings. In order to play a melody or to generate single tones you should use the macro:

sound(pitch, time, delay)

which will accept parameters for pitch, duration and pause between consecutive
tones. The macro uses mSleep for generation delays – and the program will be halted
for time+delay milliseconds and then proceed the program's flow.

If you do not intend to define a pause or a duration at all, you may define the pitch by
calling function:

void setBeeperPitch(uint8_t pitch)

which is very useful for constantly generating varying sound waves (e.g. a siren and
similar sound effects). Attention: all beeper functions will only accept “pitch”-values
ranging between 0 and 255, in which 255 represents the maximal frequency.

- 13 -

RP6 ROBOT SYSTEM - 3. RP6 CONTROL Library

3.1.5. Microphone sensor

Apart from generating sounds, the RP6 CONTROL may also react on sounds. However
the system can not evaluate the pitch, but responds to the amplitude only. This way
you may for example start the robot on any loud noise level.

We designed the circuit as a “peak-detector”, which samples the microphone's signal
during a variable period of time and stores the peak-value. The detector allows the
Microcontroller to use the ADC for evaluation of the peak value and subsequently re-
set the stored peak value again. Basically the detector stores the peak voltage in a
small capacitor and “resets” the maximum value to zero by discharging the capacitor.

Initially a special function:

void dischargePeakDetector(void)

must be called to discharge the capacitor. After initialisation another function:

uint16_t getMicrophonePeak(void)

allows you to monitor the maximal values in predefined intervals. This function will
evaluate the value and automatically call dischargePeakDetector(). One of the ex-
ample program will demonstrate how to use these functions.

3.1.6. LC-Display

The LC-Display is very useful for showing sensor values and status messages if the ro-
bot is disconnected from the PC. Writing messages on the LC-Display is comparable to
writing to the serial interface – but of course we will have to consider a few things.
Please have a look at the sample programs, which will quickly reveal how to use the
LCD-module.

You will always have to initialize the LCD at the very beginning of a program by calling
this function:

void initLCD(void)

Usually you will not need the following function:

void setLCDD(uint8_t lcdd)

and the other function (write4BitLCDData) – we will only describe these functions to
demonstrate the display control.

The LCD is operated in 4-Bit Mode, which implies the use of four data lines and two
control lines (Enable (EN) and Register Select (RS). Read/Write (R/W) has been per-
manently connected to ground to force the LCD in write mode (we will not be able and
also do not need to read from the LCD). Just like the LED control lines the four LCD's
data lines are connected to a shift register, which allows us to save some ports. In
analogy to the setLEDs-function, setLCDD will set the LCD's data lines. Additionally
setLCDD has to set the enable flag to trigger the data transfer to the LCD.

In order to transfer standard 8 Bit commands and data to the LCD the data bytes
have to be split by calling:

void write4BitLCDData(uint8_t data)

This function takes care of splitting 8 bit data into two 4 bit “Nibbles” and transferring
these halved bytes.

- 14 -

RP6 ROBOT SYSTEM - 3. RP6 CONTROL Library

The following function:

void writeLCDCommand(uint8_t cmd)

will call write4BitLCDData, but will set the RS signal to low in order to send a com-
mand to the LCD.

void clearLCD(void)

will cause the LCD to clear its contents.

void clearPosLCD(uint8_t line, uint8_t pos, uint8_t length)

will delete characters in a defined range on the display. Allowed parameters are: line,
starting position in the line and the number of characters to be overwritten.

Example:

clearPosLCD(0,10,5); // deletes the trailing 5 chars in the first LCD line

void setCursorPosLCD(uint8_t line, uint8_t pos)

sets the text cursor to a defined char position on the display. Parameter “line” has to
be set to 0 for the upper line and to 1 for the lower line. The “pos” Parameter may
range between 0 and 15 for 2x16 LCDs.

void writeCharLCD(uint8_t ch)

will send a single character to the LCD – in analogy to writeChar for the serial inter-
face. However you will initially have to make sure the display cursor has been posi-
tioned at the correct location. Otherwise the module will not display the message!

Example:

setCursorPosLCD(1,5); // Set the cursor to the second line, character #5.
writeCharLCD('R'); // now display “RP6” starting
writeCharLCD('P'); // at the cursor's location!
writeCharLCD('6');

void writeStringLCD(char *string)

In analogy to the corresponding function for the serial interface the writeStringLCD-
function will transfer a null-terminated character string from the SRAM to the LCD. Of
course this function call expects a valid text message in a RAM location and not a pre-
defined “constant”. If you just want to display a predefined “constant”-string, we ad-
vise you to use:

writeStringLCD_P(STRING)

as this function will read the text directly from flash-memory, without wasting RAM.

The following function:

void writeStringLengthLCD(char *string, uint8_t length, uint8_t offset)

displays a string with a defined number of characters on the LCD. The function's para-
meters are identical to the corresponding function for the serial interface.

- 15 -

RP6 ROBOT SYSTEM - 3. RP6 CONTROL Library

showScreenLCD(LINE1,LINE2)

This function has been designed to easily output a message to both LCD lines in a
single call. The function will automatically set the cursor at the correct position and
previously delete the complete LCD contents.

Example:

showScreenLCD("LCD line 1", "LCD line 2");

In analogy to the output functions for converting and writing numbers to the serial in-
terface the function

void writeIntegerLCD(int16_t number, uint8_t base)

will write numbers in BIN, OCT, DEC or HEX format to the LCD.

void writeIntegerLengthLCD(int16_t number, uint8_t base, uint8_t length)

Apart from the name, writeIntegerLengthLCD works similar as the equivalent function
for the serial interface.

3.1.7. SPI Bus and SPI EEPROM

The SPI (=Serial Peripheral Interface) Bus connects the EEPROM and the 8-Bit shift
register to the controller. A socket for another AT25256 compatible EEPROM (e.g. ST
M95256) in an 8-pin DIP package may be soldered to the PCB optionally.

You may also use other SPI ICs and cascade another shift register after the one on
the PCB – but we advise you to prefer the I²C-Bus and to restrict these alternative
methods to special purposes, in which the I²C-Bus cannot be used!

We provided the system with special functions for accessing the EEPROM and the
shift register, so you may avoid directly using the SPI Bus from your program. But in
case you have to access the SPI Bus, the following functions may be useful:

void writeSPI(uint8_t data)

transfers one data byte to the SPI Bus.

writeWordSPI(uint16_t data)

transfers two data bytes to the SPI Bus by using a 16 Bit variable, in which the high
byte will be transmitted prior to the low byte.

void writeBufferSPI(uint8_t *buffer, uint8_t length)

will transfer up to 255 bytes from a predefined array to the SPI Bus. The number of
bytes to be transmitted from the “buffer”-array has to be specified in the parameter
“length”.

uint8_t readSPI(void)

will read a data byte from the SPI Bus.

uint16_t readWordSPI(void)

reads two data bytes from the SPI Bus and returns the contents in a 16 Bit Variable.
The high byte will be read prior to the low byte.

- 16 -

RP6 ROBOT SYSTEM - 3. RP6 CONTROL Library

void readBufferSPI(uint8_t *buffer, uint8_t length)

reads up to 255 bytes from the SPI Bus into a predefined array.

As already stated, we will usually not need these SPI-functions, but the following func-
tions use them for accessing the EEPROM, which is connected to the SPI Bus.

uint8_t SPI_EEPROM_readByte(uint16_t memAddr)

reads a single byte from address “memAddr” in the EEPROM. The address value may
range from from 0 up to 32767 for our 32 KB sized EEPROM.

Example:

// The next program line will read a byte from EEPROM address 13860:
uint8_t data = SPI_EEPROM_readByte(13860);

void SPI_EEPROM_readBytes(uint16_t startAddr, uint8_t *buffer, uint8_t length)

will read up to 255 Bytes (length) beginning at the address “startAdr” into a pre-
defined array (buffer).

void SPI_EEPROM_writeByte(uint16_t memAddr, uint8_t data)

stores one data byte to the EEPROM address “memAddr”.

void SPI_EEPROM_writeBytes(uint16_t startAddr, uint8_t *buffer, uint8_t length)

stores up to 64 bytes (length) in the array “buffer” beginning at the EEPROM address
“startAddr”.

Please respect the limit of 64 Bytes as maximum transfer size in a
single write operation. 64 Bytes is the so-called pagesize of the EEP-
ROM and this parameter represents the maximum memory size avail-
able as data cache. Basically data that is transferred sequentially will
have to be located inside a page, e.g. between addresses 0 and 63, 64
and 127, 128 and 191 ...! If you exceed this page size limits the EEP-
ROM will be overwriting the data at the page beginning. Of course it al-
lows you to start writing e.g. at address 50, but if you transmit more
than 14 bytes, the address counter will restart at zero and overwrite
any data stored in the cache.

Reading data from the EEPROM however will not be restricted by page-
sizes and in fact you might even read the complete EEPROM contents
at once.

The EEPROM requires 5ms to write data, in which you cannot access the EEP-
ROM-device. In order to evaluate the present device's status you can call the function:

uint8_t SPI_EEPROM_getStatus(void);

The following code snippet demonstrates how to evaluate the EEPROM's status:

if(!(SPI_EEPROM_getStatus() & SPI_EEPROM_STAT_WIP)) {
// ...

}

and check whether the EEPROM may be accessed. This functionality is included in the
previously described functions, and usually you will not have to use this function! Any-
way, it can be useful to accelerate writing if you have to do other things during this
5ms write delay.

- 17 -

RP6 ROBOT SYSTEM - 3. RP6 CONTROL Library

3.1.8. ADCs

The ADCs may be read with the following function, similar to one in the RP6Lib:

uint16_t readADC(uint8_t channel)

We did not yet provide the RP6-M32 lib with an automated alternative functionality for
sequentially reading all ADC-channels in background-mode

Of course the channel-names are different from the RP6Lib:

ADC_7 --> ADC Channel 7 – available on the 10-pin connector “ADC”!
ADC_6 --> ADC Channel 6 ...
ADC_5
ADC_4
ADC_3
ADC_2 --> ADC Channel 2
ADC_KEYPAD --> This channel is connected to the keypad
ADC_MIC --> This channel serves the microphone.

3.1.9. I/O Ports

The RP6 CONTROL provides the system with 14 freely available I/O Ports and we will
shortly describe how to generally access the AVR's I/O Ports.

The ATMEGA32 contains 4 I/O-ports. Each of these ports is 8 bits wide and is con-
trolled by 3 registers: One register controls the “direction” of the I/O Pins (DDRx) and
specifies whether a pin is used in input- or output-mode. A second register is used to
write data (PORTx) and a third register is used for reading (PINx).

Whenever you intend to use an I/O Pin for data output, e.g for LED-control, you must
start by setting the corresponding bit in the DDRx Register to 1.

Example:
DDRC |= IO_PC7; // PC7 is set to output-mode
DDRC = IO_PC7 | IO_PC6 | IO_PC5; // PC5, PC6, PC7 are set to output-mode,
 // all other pins are set to input-mode!

You may now proceed to set the output to high respectively low level in the corres-
ponding PORTx-register.

Example:
PORTC |= IO_PC7; // High
PORTC &= ~IO_PC7; // Low

If a bit in the DDRx-register has been set to zero, the corresponding pin is operated in
input-mode.

Example:
DDRC &= ~IO_PC6; // PC6 is set to input-mode

You may now evaluate the PINx-register and read the pin's status (check for low or
high level).

if(PINC & IO_PC6)
writeString_P("PC6 is HIGH!\n");

else
writeString_P("PC6 is LOW!\n");

By setting the appropriate bits in the PORTx-Register you may activate the pullup-res-
istors, which are integrated in the Microcontroller. This option is useful for keys,
bumpers and other types of sensors.

- 18 -

RP6 ROBOT SYSTEM - 3. RP6 CONTROL Library

The following I/O Pins are freely available on the RP6 CONTROL M32 (exact definitions
can be found in the header file RP6Control.h):

IO_PC7
IO_PC6
IO_PC5
IO_PC4
IO_PC3
IO_PC2

IO_PD6
IO_PD5

You may use the ADC-channels as I/O Pins as well, but you will have to pay attention
to the different names used compared to ADC channels (ADC_7 versus ADC7)!

ADC7
ADC6
ADC5
ADC4
ADC3
ADC2

Important note: Individual I/O Pins have been designed for a maximum current of
20mA. In total an 8 Bit Port may deliver a maximum of 100mA! So, if you are plan-
ning to control heavier loads you must use external transistors!

Relevant information on this topic can also be found in the MEGA32's datasheet, which
you can find on the CD-ROM!

- 19 -

RP6 ROBOT SYSTEM - 4. Example Programs

4. Example Programs
On the RP6-CD we provide a number of sample programs, which demonstrate the RP6
CONTROL M32's basic functionality. In analogy to the robot base unit, these samples
have to be considered as a starting point for your own programs and by no way as op-
timal solutions. We deliberately chose this concept to leave some interesting work for
you – and it would be boring to just test a few prefabricated programs, wouldn't it?

Of course you may share your own programs with other RP6 users through an Inter-
net forum for example. The RP6ControlLib and all other sample programs have been
released under the Open Source Licence GPL (General Public License), which allows
you to modify programs and to make them available to others under GPL conditions.

In the Internet a great number of example programs for the MEGA32 are already
available, as the AVR Controller family is very popular amongst hobbyists. However
you will have to adapt these example to the RP6ControlLib and take the hardware
specific details of the RP6 into account – otherwise the programs may be malfunction-
ing (the most obvious problems are different pinouts, multiple use of hardware mod-
ules (e.g. timers), different clock frequencies, etc.)!

Example 1: “Hello World”-Program with LCD text output and LED running light
Directory: <RP6Examples>\RP6ControlExamples\Example_01_LCD\
Source file: RP6Control_LCD.c

The program will output messages through the serial interface and on the LC-
Display, you should connect the robot to your PC and observe the messages ap-
pearing in the terminal of the RobotLoader Software! Optionally you may also
connect the LC-Display.

The Robot will not move in this example program – as long as you only load the
I²C-Bus Slave Program into the controller on the mainboard! Therefore you are
allowed to place the robot on top of a table near your PC.

The sample program outputs a short “Hello World”-message to the serial interface and
subsequently executes a running light. Additionally the program begins with writing
some static text messages to the LCD and proceeds by displaying a moving “Hello
World”-text – in which the words “HELLO” and “WORLD” are slowly shifted back and
forth. After a delay of around 16 seconds the program briefly pauses and generates
two short beeps. Having waited for 8 seconds, the program proceeds – equally gener-
ating two short beeps.

Example 2: Buttons and Sound
Directory: <RP6Examples>\RP6ControlExamples\Example_02_Buttons\
Source file: RP6Control_Buttons.c

The program will output messages to the serial interface and the LC-Display!

The Robot will not move in this example program!

This sample program demonstrates how to use the five keys of the RP6-M32. Each
keystroke will result in a text-message, showing the key-number on the display and
generating a melody with the beeper.

(Attention: Pressing T4 may soon be getting on your nerves ;-)).

- 20 -

RP6 ROBOT SYSTEM - 4. Example Programs

Example 3: Microphone sensor
Directory: <RP6Examples>\RP6ControlExamples\Example_03_Microphone\
Source file: RP6Control_Microphone.c

The program will output messages to the serial interface and the LC-Display!

The Robot will not move in this example program!

The Microphone sensor may be used for detecting loud noises. The sample program
displays the measured noise-level as a bar graph on the LCD and with the LEDs. Addi-
tionally the measurement values are shown. Tip your finger on the microphone or
make some other loud noise to check the functionality. Clap your hands or knock on
wood while observing the display, the LEDs and the messages.

Example 4: External EEPROM
Directory: <RP6Examples>\RP6ControlExamples\Example_04_EEPROM\
Source file: RP6Control_04_EEPROM.c

The program will output messages to the serial interface and the LC-Display!

The Robot will not move in this example program!

This example program demonstrates how to read and write the external EEPROM. Ini-
tially the program reads and displays the first two “Pages” (each of which are 64 Byte
long). In order to check the EEPROM's ability to store contents inside a powered off
robot, you may turn off the RP6 after the program has written data to the EEPROM
and switch it on again! The written data is preserved and shown!

Now the program overwrites the first page with 64 bytes and rereads the first 128
bytes to check, whether the procedure really altered the first page's contents and did
not accidentally disturb the rest of the EEPROM's contents (which would change these
storage cell's contents from the default value 255).

The program now proceeds by writing and reading individual bytes. Initially a value
128 will be written to the memory cell with address 4 and subsequently the program
reads the first two pages – now using a byte by byte reading mode, which of course is
processing slower than directly transferring a complete memory page.

If everything is done, the program will rest in an infinite running light loop.

Example 5: Analog/Digital Converter (ADC) and I/O Ports
Directory: <RP6Examples>\RP6ControlExamples\Example_05_IO_ADC\
Source file: RP6Control_05_IO_ADC.c

The program will output messages to the serial interface and the LC-Display!

The Robot will not move in this example program!

Even if it works just the same as on the robot, we will demonstrate how to use the
free ADCs and I/Os in this example. They are used frequently on this module, so an
example dedicated to this topic may be very helpful for beginners.

The program uses the following names for the ADCs and I/Os:
ADC7 (1 << PINA7) // ADC Channel #7 - may also be used as a standard I/O Pin
ADC6 (1 << PINA6) // Channel # 6 ...
ADC5 (1 << PINA5)
ADC4 (1 << PINA4)
ADC3 (1 << PINA3)
ADC2 (1 << PINA2) // Channel # 2. Channels #0 and #1 have been reserved for keys and microphone.

- 21 -

RP6 ROBOT SYSTEM - 4. Example Programs

IO_PC7 (1 << PINC7) // I/O-Pin 7 at PORTC
IO_PC6 (1 << PINC6) // Pin 6 ...
IO_PC5 (1 << PINC5)
IO_PC4 (1 << PINC4)
IO_PC3 (1 << PINC3)
IO_PC2 (1 << PINC2) // I/O-Pin #2 at PORTC
IO_PD6 (1 << PIND6) // I/O Pin #6 at PORTD
IO_PD5 (1 << PIND5) // I/O Pin #5 at PORTD

(see definitions in header file RP6Control.h)

The program will not perform anything useful – and you do really need to run this pro-
gram. There's nothing connected to the I/O Pins by default so this does not make any
sense. You have connected your own hardware to the I/Os and write your own control
program for it.

Example 6: I²C Bus Interface – Master Modus
Directory: <RP6Examples>\RP6ControlExamples\Example_06_I2CMaster\
Source file: RP6Control_06_I2CMaster.c

This program demonstrates how to use the I²C Bus in master mode. The I2C-Slave
example program must be loaded to controller on the mainboard before you can
run this example!

The example demonstrates how to control the MEGA32 on the mainboard in slave-
mode. For proper operation you have to load the I2C-Slave example program (avail-
able in the RP6Base example folder) into the controller on the RP6 mainboard before!

The I²C Bus access is done in a similar way as for the controller on the mainboard. We
use the exactly the same functions here.

The sample program allows you to transfer I²C Bus-commands to the mainboard con-
troller (using the previously installed slave program) by hitting one of the five keys.
Key T1 will increment a counter by one and transmit a setLEDs command with this
counter-value to the slave. This simple procedure displays a binary counter with the
mainboard's 6 Status LEDs.

At hitting key T2 the program will read all registers and output the contents on the
serial interface. In contrast, T3 only reads the light sensor's values and additionally
displays the results on the LC-Display.

T4 and T5 execute a “Rotate”-command and force the robot to perform a small rota-
tion clockwise and counter-clockwise, respectively (of course you are allowed to hit
the key a few times, which will cause the robot to continue to rotate...).

Basically this program – and all other programs as well – may be modified and is an
extremely useful start point for testing new I²C-devices or any additional functionality
you want to include in the slave example program.

Example 7: I²C Bus Interface – Master Modus – react on external Interrupts
Directory: <RP6Examples>\RP6ControlExamples\Example_07_I2CMaster\
Source file: RP6Control_07_I2CMaster.c

This program demonstrates how to use the I²C Bus in master mode. The I2C-Slave
example program must be loaded to controller on the mainboard before you can
run this example!

Maybe you already noticed the interrupt-signals on the RP6's XBUS connectors? These
interrupt signals allow you to react on sensor state changes without constantly polling
the slave for new data. This will improve the system's performance as any bus access
will cost some time.

- 22 -

RP6 ROBOT SYSTEM - 4. Example Programs

A good example for using interrupts is the robot's ACS. In this case, the sensor state
will rarely change (e.g. compared to an ADC which could alter its state all the time)
and permanently evaluating the status would be quite inefficient.

As soon as the ACS-status changes the slave-program sets the INT1-signal to high
level. INT1 is connected to the MEGA32's Interrupt input 0 on the RP6 CONTROL M32.
The interrupt allows the controller to react immediately to this event and to evaluate
the controller's status on the mainboard.

However, in the sample programs we will NOT use interrupt routines to react on this
event, but we will poll the pin status in the main-loop instead. The I2C-Bus transfers
are interrupt based and we can not use interrupt routines to initiate new transfers. In
order to handle I2C-transfers, we have to frequently call the task_I2CTWI() function
from the main-loop. For this reason an interrupt-routine would not be helpful as we
would have to set a status flag and perform the rest in the main loop anyway. Of
course this is possible, too – but we get the same result by monitoring the pin state.
In fact, it would even cause problems to abort pending I2C Bus-transfers. Thus we de-
cided to implement a task_checkINT0()-function for continuously checking the inter-
rupt signal and eventually read the slave's status. As soon as we read the slave's
status register with address 0, the interrupt-signal gets cleared. We may evaluate the
first three registers to find out, which source triggered the interrupt.

The sample program has been designed to perform exactly like this and it will output
the current ACS-status on different channels: on the 4 LEDs, on the LCD and on the
serial interface as well. Additionally, an acoustic signal will be generated with the
beeper.

Initially the program presets the ACS transmitter power-level with a specific I²C Bus
command. The program does not only check the ACS, but also reacts on bump-
er-events and to any incoming RC5-transfers from remote controls or other robots.

Basically we may use this kind of control-flow for all other robot's sensors. Also for
other expansion modules that may be released in the future.

Another interesting detail is the “Heartbeat”-display of the program. The task_LCD-
Heartbeat() function constantly triggers the system to display a blinking asterisk-char-
acter '*' on the LCD. The blink-frequency has been set to 1Hz. The “Heartbeat”-signal
is helpful for debugging any program that could hang-up/crash as you will immeadi-
ately see if this happened. It will help you to isolate and analyse the program's func-
tions causing the hang-up. These hang-ups may occur quite often during program de-
velopment.

Therefore the I²C Slave sample program provides a “software-watchdog” for the
mainboard's controller. If the master is not responding to an interrupt-event (by read-
ing register 0) within a given time limit, the watchdog will stop all robot movements.
Most important is to stop the motors! Imagine the slave receives a command to drive
forwards at a speed of 10cm/s and then the master hangs-up! This would cause the
robot to crash into the next obstacle at high speed without a chance to react on a
sensor detecting the obstacle...

Initially the software watchdog-timer is deactivated. In order to activate the watch-
dog, you have to send a special command through the I²C Bus. You may also config-
ure the watchdog to trigger an interrupt at 500ms-intervals to check the master-con-
troller's activity. We will use this concept in the next example.

- 23 -

RP6 ROBOT SYSTEM - 4. Example Programs

Example 8: I²C Bus Interface – reduced RP6 Library
Directory: <RP6Examples>\RP6ControlExamples\Example_08_I2CMaster\
Source file: RP6Control_08_I2CMaster.c

This program demonstrates how to use the I²C Bus in master mode. The I2C-Slave
example program must be loaded to controller on the mainboard before you can
run this example!

By adding lots of functions and other things into a single source, you may soon loose
the overview. For this reason we decided to split the previous example program 7 into
two C-files and to add some additional functionality. It is kind of a reduced RP6 library
for the I²C Bus robot control and allows you to virtually use this library just like the
normal RP6Lib for the mainboard's controller. In order to simplify reusing of RP6Lib's
program code for the RP6ControlLib, we defined a number of functions and variables
identically to the RP6Lib equivalents. We also provided the library with well-known
event handler functions for ACS, IRCOMM and the Bumpers. The library also contains
new event handlers for low battery level and the watchdog-requests. Additionally the
following example demonstrates how to control the robot's movements by using the
available functions.

The program's structure is similar to example 7. As already announced, we added a
new watchdog-timer function, which shows it's requests on the LCD. The program will
also read all sensor registers and output the results to the serial interface. Of course
the program will also output the ACS-, Bumper- and RC5-events.

Example 9: I²C Bus Interface – controlling the robot's movements
Directory: <RP6Examples>\RP6ControlExamples\Example_09_Move\
Source file: RP6Control_09_Move.c

This program demonstrates how to use the I²C Bus in master mode. The I2C-Slave
example program must be loaded to controller on the mainboard before you can
run this example!

ATTENTION: The Robot will move in this example program!

Right now we will add a few movement control functions to the newly created library,
which are well-known from RP6Lib: move, rotate, moveAtSpeed, changeDirection and
stop. Usage of these functions is identical to the equivalent RP6Lib's functions. In or-
der to simplify the code, we removed much of the program code from the last ex-
amples, except for the remote watchdog display. We want to try using the blocking
mode of the movement controls and this would cause some things like the heartbeat
display to stop working anyway. This example program will command the robot to be
moving back and forth and rotate for around 180° - just like in example 7 for RP6Lib
(“RP6Base_Move_02.c”).

- 24 -

RP6 ROBOT SYSTEM - 4. Example Programs

Example 10: I²C Bus Interface – Verhaltensbasierter Roboter
Directory: <RP6Examples>\RP6ControlExamples\Example_10_Move2\
Source file: RP6Control_10_Move2.c

This program demonstrates how to use the I²C Bus in master mode. The I2C-Slave
example program must be loaded to controller on the mainboard before you can
run this example!

ATTENTION: The Robot will move in this example program!

The newly created library allows you to copy almost everything of the example pro-
grams for behaviour controlled robots you already know from the RP6Lib examples.
This is exactly how we derived this example program from “RP6Base_05_Move_05”.
We only needed to do a few minor modifications – e.g. the mainboard's LEDs have to
be controlled by a “setRP6LEDs”-function, as we use “setLEDs” for the RP6-M32's
LEDs already...

In other respects the program will behave almost identical to it's counterpart – the ro-
bot will cruise around and tries to avoid obstacles. The program's functionality is
identical, but the robot is controlled by the RP6-M32 module!

Some new features have been added, too. Now the LCD- and LEDs on the RP6-M32
show the currently activated behaviour. This allows you to check the behaviour status.
We designed a tiny subroutine to make sure that identical strings will be transmitted
only once to the display. Otherwise this would result in a flickering display. In case the
“Cruise”-behaviour is active, the four red status LEDs will perform a running light.

The program also checks the battery's condition. At very low levels, the robot gets
stopped. However, it will take some time until freshly charged batteries reach this low
level...

Initially the program will wait for three loud noises (you will see a “WAIT” message on
the second display line, followed by a counter for these noises) – e.g. clap your hands
three times! As an alternative you may hit any key of the RP6-M32, which has been
implemented as another seperate behaviour.

OK - we've already reached the end of this short additional manual. You may now
give your fancy full scope and start writing new programs or add new sensors to the
RP6, controlled by the RP6-M32 - or do anything else you can imagine...

- 25 -

RP6 ROBOT SYSTEM - APPENDIX

APPENDIX
A – Connector Pinouts

This overview provides you with the most important connector pinouts on the main-
board. Additionally we extended the list by a number of details for usage.

The serial interface connector pinout is identical to the mainboard's connector and of
course the same pinouts are used for the XBUS- and USRBUS-connectors!

I/O Ports:

The I/O-connector provides all freely available I/O-ports
and the +5V supply voltage.

PC2, PC3, PC4, PC5, PC6, PC7, PD5 and PD6.

ATTENTION: Please do not interconnect this connector's
supply voltage with another module's (e.g. an experiment
expansion module) supply voltage to prevent large ground
loops or equivalent problems.

ADC Channels:

6 free ADC-channels (which of course may also be used as
I/O-pins) are available on the 10pin ADC connector, which
also provides the supply voltage.

In analogy to the
mainboard, two of the

ADCs are available on unpopulated pads. This
will allow you to solder your own connectors with
a 2.54mm grid.

But be careful and avoid “excessive soldering”!
You will need some experience in soldering to handle this.

You may use these pads for connecting any analog or digital sensors (the output
voltage of these sensors may range between 0 and 5V). The connectors will also
provide the sensors with a 5V supply voltage. Eventually a large electrolytic capacitor
should be added – up to 220 or 470µF (do not exceed this value! The capacitor's op-
erating voltage has to be minimal 16V) will be sufficient for most applications.

However you will probably not really need a big electrolytic capacitor, unless you are
working with sensors, which require high peak currents – e.g. the popular Sharp IR
distance sensors. Decoupling capacitors (100nF) soldered to the board are suitable for
short supply lines only – for long supply lines, they would have to be directly soldered

- 26 -

RP6 ROBOT SYSTEM - APPENDIX

on the sensor's connection pads (we advise to directly mount these capacitors on the
sensor's pads even for short supply lines as well!).

LCD Connector:

If you do not wish to use the pre assembled standard LCD,
you may alternatively build your own cable by using the cor-
rect connector pinout for your specific LCD.

The signal lines D0, D1, D2 ,D3, RW have been grounded to
signal GND, as we will only use the LCD in 4 Bit mode and do
not read from the device.

Be careful to use the correct pinout and avoid mirrored
connections of the plug!

The pin names may vary from manufacturer to manufacturer, but usually the pin
names are identical to those shown in our documentation. In this case you may con-
nect the LCD signals 1:1.

- 27 -

	1. The RP6 CONTROL M32 Expansion Module
	1.1. Technical Support
	1.2. Scope of Delivery
	1.3. Features and Technical Data

	2. Installing the Expansion Module
	3. RP6 CONTROL Library
	3.1.1. Initializing the Microcontroller
	3.1.2. Status LEDs
	3.1.3. Keys
	3.1.4. Beeper
	3.1.5. Microphone sensor
	3.1.6. LC-Display
	3.1.7. SPI Bus and SPI EEPROM
	3.1.8. ADCs
	3.1.9. I/O Ports

	4. Example Programs
	APPENDIX
	A – Connector Pinouts

